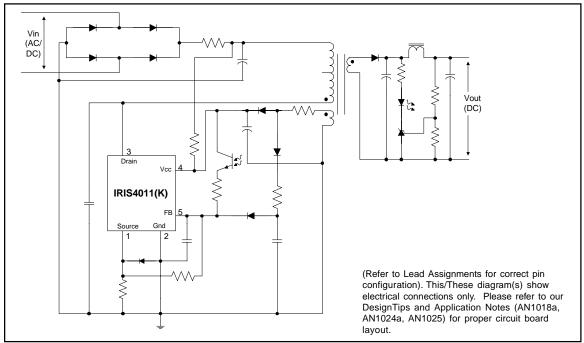
International **TOR** Rectifier

Data SheetNo. PD60188-B

IRIS4011(K)

INTEGRATED SWITCHER

Features


- Primary current mode control, and secondary voltage mode control
- Vcc Over-voltage protection (latched)
- Over-current & over-temperature protection
- Quasi resonant, variable frequency operation
- 5 pin TO-220 and TO-262
- 3.9Ω Rds(on) max/ 650V MOSFET
- Fully Characterized Avalanche Energy

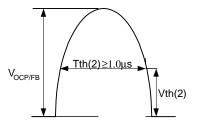
Packages

Description

The IRIS4011(K) is a dual mode voltage and current controller combined with a MOSFET in a single package. The IRIS4011(K) is designed for use in universal and single input AC/DC and DC/DC switching power supplies and is capable of powers up to 60W for a universal line input. The device can operate in either a quasi-resonant or Pulse Ratio Control (PRC) mode, and thereby variable frequency operation.

Typical Connection Diagram

Absolute Maximum Ratings


Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to terminals stated, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Terminals	Max. Ratings	Units	Note
I _D peak	Peak drain current	3-1	6.8		Single pulse
I _D max	Maximum switching current	3-1	2.7	A	V ₂₋₃ = 0.78V Tc=25°C
E _{AS}	Single pulse avalanche energy	3-1	92	mJ	V _{dd} =99V,L=20mH, G=12V, lpk=2.8A
V _{CC}	Power supply voltage	4-3	35	v	
V _{TH}	OCP/FB terminal voltage	5-2	6		
P _{D1}	Power dissipation for MOSFET	3-1 ·	89		With infinite heatsink
			1.4	W	Without heatsink
P _{D2}	Power dissipation for control part (MIC)	4-2	0.8		Specified by VIN x IIN
Rth _{JC}	Thermal resistance, junction to case	—	1.4	°C/W	
TJ	Junction temperature	—	-40-125		
T _S	Storage temperature	—	-40-125		
T _f	Internal frame temperature in operation	_	-20-125	°C	Refer to recommended operating temperature
T _{OP}	Ambient operating temperature	_	-20-125	1	
TL	Lead temp. (soldering, 10 seconds)	—	300	1	

Recommended Operating Conditions

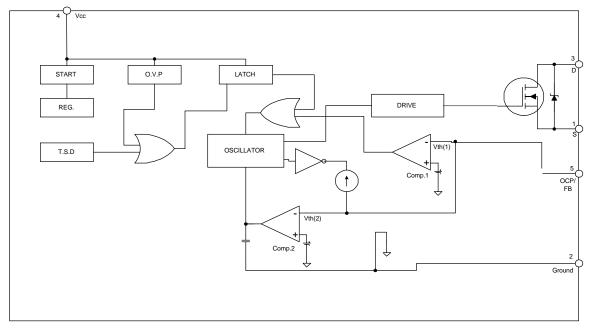
Time for input of quasi resonant signals.

For the Quasi resonant signal inputted to the $V_{DCP/FB}$ terminal at the time of quasi resonant operation, the signal should be wider thant Tth(2)

www.irf.com

Electrical Characteristics (for Control IC) $V_{CC} = 18V$, (T_A = 25°C) unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	14.4	16	17.6	V	
V _{CCUV-}	V _{CC} supply undervoltage negative going threshold	9	10	11	v	
I _{QCCUV}	UVLO mode quiescent current	-	—	100	μA	V _{CC <} V _{CCUV+}
I _{QCC}	Quiescent operating VCC supply current	_	_	30	mA	
T _{OFF/(MAX)}	Maximum OFF time	40	_	60		
T _{TH(2)}	Minimum input pulse width for quasi resonant signals	—	_	1.0	μsec	
T _{OFF/(MIN)}	Minimum OFF time	_	_	1.5		
V _{TH(1)}	OCP/FB terminal threshold voltage 1	0.68	0.73	0.78	V	
V _{TH(2)}	OCP/FB terminal threshold voltage 2	1.3	1.45	1.6	v	
I _{OCP/FB}	OCP/FB terminal sink current	1.1	1.35	1.7	mA	
V _{CC(OVP)}	V _{CC} overvoltage protection limit	20.5	22.5	24.5	V	
I _{CC(LA)}	Latch circuit holding current	—	_	400	μA	
V _{CC(LaOFF)}	Latch circuit reset voltage	6.6	—	8.4	V	
T _{J(TSD)}	Thermal shutdown activation temperature	140	—	—	°C	


Electrical Characteristics (for MOSFET)

 $(T_A = 25^{\circ}C)$ unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{DSS}	Drain-to-source breakdown voltage	650	—	—	V	
I _{DSS}	Drain leakage current	—	—	300	μΑ	Vds=520V, V _{CC} =0V
						Tj =125°C
R _{DS(ON)}	On-resistance	—	—	3.9	Ω	V ₃₋₁ =10V, I _D =0.9A
tr	Rise time (10% to 90%)	—	_	250	ns	
THj-C	Thermal resistance	—	—	1.4	°C/W	Between junction
						and case

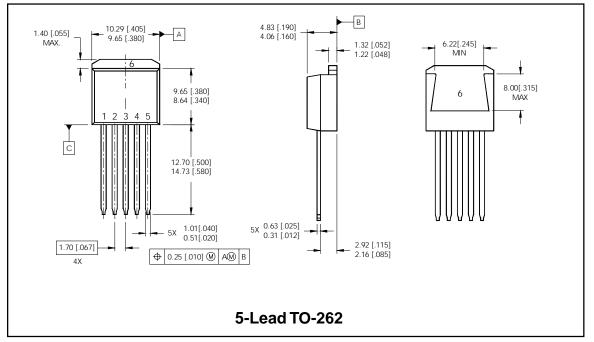
International **tor** Rectifier

Block Diagram

Lead Assignments	Pin #	Symbol	Description
	1	S	MOSFET Source terminal
	2	Ground	Ground terminal
	3	D	MOSFET Drain terminal
	4	Vcc	Control circuit supply voltage
1 2 3 4 5	5	OCP/FB	Overcurrent detection, and Voltage mode control feedback signal

Other Functions

O.V.P. – Overvoltage Protection Circuit T.S.D. – Thermal Shutdown Circuit


International **TOR** Rectifier

10.54 [.415] В А 9.91 [.390] 3.96 [.156] 3.53 [.139] 4.82 [.190] Ø 2.94 [.116] 2.54 [.100] 4.19 [.165] 1,39 [.055] V 0.89 [.035] 6.60 [.260] 6.00 [.236] 1 15.87 [.625] 4 14.48 [.570] C 2 345 14.09 [.555] 13.59 [.535] 5X 0.63 [.025] 0.31 [.012] 1.01 [.040] 5X 0,51 [.020] 1.70 [.067] 2.92 [.115] 4X 2.16 [.085] NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: INCH. 3. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE SIMILAR TO JEDEC OUTLINE SERIES TS-001. 01-6020 00 01-3042 01 (TS-001) 5-Lead TO-220

Case outline

International

Case outline

International INTER INTERNATIONAL INTERNATIONAL

www.irf.com